Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7726, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173302

RESUMO

We present an analysis for metamaterial (MM) enhanced wireless power transfer (WPT) that includes new results revealing the impact of magnetostatic surface waves and their degradation of WPT efficiency. Our analysis shows that the commonly used fixed loss model used by previous works leads to the incorrect conclusion regarding the highest efficeincy MM configuration. Specifically, we show that the "perfect lens" configuration provides lower WPT efficiency enhancement in comparison to many other MM configurations and operating conditions. To understand why, we introduce a model for quantifying loss in MM-enhanced WPT and introduce a new figure of merit on efficiency enhancement, [Formula: see text]. Using both simulation and experimental prototypes, we show that while the "perfect-lens" MM achieves a field enhancement of four times the other configurations considered, its internal loss due to magnetostatic waves significantly reduces its efficiency-enhancement. Surprisingly, all the MM configurations analyzed other than the "perfect-lens" achieved higher efficiency enhancement in simulation and in experiment than the perfect lens.

2.
Nature ; 434(7037): 1085, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858562

RESUMO

Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...